Shear Wall Detailing for Ductility Class
According to Eurocode: EN 1998-1

shear-wall-section.png

Shear wall dimensions

Length - lw = 4000โ€‰ mm

Web thickness - bwo = 300โ€‰ mm

Total height - hw = 19000โ€‰ mm

Clear storey height - hs = 3820โ€‰ mm

Number of storeys - ns = 6โ€‰

Confined zone dimensions

bc = 300โ€‰ mm, hc = 875โ€‰ mm

Cross section area

Area of confined boundary element

Af = bcโ€Šยทโ€Šhc = 300โ€Šยทโ€Š875 = 262500 mmยฒ

Web area

Aw = โ€Š(โ€Šlw โˆ’ 2โ€Šยทโ€Šhcโ€Š)โ€Šโ€Šยทโ€Šbwo = โ€Š(โ€Š4000 โˆ’ 2โ€Šยทโ€Š875โ€Š)โ€Šโ€Šยทโ€Š300 = 675000 mmยฒ

Total area

Ac = Aw + 2โ€Šยทโ€ŠAf = 675000 + 2โ€Šยทโ€Š262500 = 1200000 mmยฒ

Maximum seismic axial load - NEd = 2254โ€‰ kN

 

Concrete   [EN 1992-1-1, Table 3.1]

Characteristic compressive cylinder strength

fck = 25โ€‰ MPa

Partial safety factor - ฮณc = 1.5 , ฮฑct = 1 , ฮฑcc = 1โ€‰

shear-wall-view.png

Mean value of axial tensile strength

fctm = 0.3โ€Šยทโ€Šfck23 = 0.3โ€Šยทโ€Š2523 = 2.564964 MPa

Characteristic axial tensile strength

fctk,005 = 0.7โ€Šยทโ€Šfctm = 0.7โ€Šยทโ€Š2.564964 = 1.795475 MPa

Design compressive cylinder strength

fcd = ฮฑccโ€Šยทโ€Šfckฮณc = 1โ€Šยทโ€Š251.5 = 16.666667 MPa

Unconfined concrete ultimate strain

ฮตcu2 = 0.0035

Ultimate compressive strain - ฮตc2 = 0.002

Longitudinal reinforcement

Characteristic yield strength - fyk = 500โ€‰ MPa

Selected steel class B500B

Partial safety factor - ฮณs = 1.15

Design yield strength - fyd = fykฮณs = 5001.15 = 434.782609 MPa

Modulus of elasticity - Es = 200000 MPa

Reinforcement for each confined boundary element

Bar diameter - dbL = 25โ€‰ mm

[BS EN 1992-1-1, ยง 9.5.2 (1)/NA.1]

Minimum bar diameter - dbL,min = 12 mm

Bar count - nb = 13โ€‰

Bar count along "h0" - nb1 = 6โ€‰

Bar count along "b0" - nb2 = ceiling(nb2 โˆ’ nb1 + 2) = ceiling(132 โˆ’ 6 + 2) = 3

Reinforcement area

As1 = ฯ€โ€Šยทโ€ŠdbL24 = 3.141593โ€Šยทโ€Š2524 = 490.873852 mmยฒ

As = nbโ€Šยทโ€ŠAs1 = 13โ€Šยทโ€Š490.873852 = 6381.360078 mmยฒ

Reinforcement ratio

ฯL = AsAf = 6381.360078262500 = 0.02430994

[ยง 5.4.3.4.2 (8)]

Design check: 0.005 โ‰ค ฯL = 0.02430994 โ‰ค 0.04. The check is satisfied! โœ“

Vertical web reinforcement

Bar diameter - dbv = 10โ€‰ mm

Bar spacing - sv = 250โ€‰ mm

[EN 1992-1-1, ยง 9.6.2 (3)]

Maximum bar spacing

sv,max = minโ€Š(โ€Š3โ€Šยทโ€Šbwo; 400โ€Š)โ€Š = minโ€Š(โ€Š3โ€Šยทโ€Š300; 400โ€Š)โ€Š = 400 mm

Single bar area - Asv1 = ฯ€โ€Šยทโ€Šdbv24 = 3.141593โ€Šยทโ€Š1024 = 78.539816 mmยฒ

Reinforcement ratio - ฯv = 2โ€Šยทโ€ŠAsv1svโ€Šยทโ€Šbwo = 2โ€Šยทโ€Š78.539816250โ€Šยทโ€Š300 = 0.002094395

[EN 1992-1-1, ยง 9.6.2 (1)]

Minimum reinforcement ratio - ฯv,min = 0.002

[ยง 5.4.3.4.2 (11)]

Minimum reinforcement ratio for zones with compressive strain > 0.002

ฯv,min = 0.005

Horizontal web reinforcement

Bar diameter - dbh = 12โ€‰ mm

Bar spacing - sh = 150โ€‰ mm

[EN 1992-1-1, ยง 9.6.3 (2)]

Maximum bar spacing - sh,max = 400 mm

Single bar area - Ash1 = ฯ€โ€Šยทโ€Šdbh24 = 3.141593โ€Šยทโ€Š1224 = 113.097336 mmยฒ

Reinforcement ratio - ฯh = 2โ€Šยทโ€ŠAsh1shโ€Šยทโ€Šbwo = 2โ€Šยทโ€Š113.097336150โ€Šยทโ€Š300 = 0.005026548

[EN 1992-1-1, ยง 9.6.3 (1)]

Minimum reinforcement ratio

ฯh,min = maxโ€Š(โ€Š0.25โ€Šยทโ€Šฯv; 0.001โ€Š)โ€Š = maxโ€Š(โ€Š0.25โ€Šยทโ€Š0.002094395; 0.001โ€Š)โ€Š = 0.001

 

Transverse reinforcement in confined boundary elements

Characteristic yield strength - fywk = 500โ€‰ MPa

Design yield strength - fywd = fywkฮณs = 5001.15 = 434.782609 MPa

Concrete cover to hoops - c = 42โ€‰ mm

Hoop diameter - dbw = 8โ€‰ mm

[EN 1992-1-1, ยง 9.5.3 (1)]

Minimum diameter

dbw,min = maxโ€Š(โ€Š6; 0.25โ€Šยทโ€ŠdbLโ€Š)โ€Š = maxโ€Š(โ€Š6; 0.25โ€Šยทโ€Š25โ€Š)โ€Š = 6.25 mm

Hoop diameter check:

dbw = 8 โ‰ฅ dbw,min = 6.25 mm. The check is satisfied! โœ“

 

[ยง 5.4.3.4.2 (1)]

Critical region height

hcr_ = max(lw; hw6) = max(4000; 190006) = 4000 mm

Must not be greater than

hcr,max = minโ€Š(โ€Š2โ€Šยทโ€Šlw; hsโ€Š)โ€Š = minโ€Š(โ€Š2โ€Šยทโ€Š4000; 3820โ€Š)โ€Š = 3820 mm, for number of storeys ns = 6 ≤ 6

hcr = minโ€Š(โ€Šhcr_; hcr,maxโ€Š)โ€Š = minโ€Š(โ€Š4000; 3820โ€Š)โ€Š = 3820 mm

 

[ยง 5.1.2 (1)]

Shear wall dimensions check

lwbwo = 4000300 = 13.333333 ≥ 4. The check is satisfied! โœ“

[ยง 5.4.1.2.3 (1)]

Minimum thickness - bw,min = max(150; hs20) = max(150; 382020) = 191 mm

bwo = 300 mm ≥ bw,min = 191 mm. The check is satisfied! โœ“

[ ยง 5.4.3.4.2 (6)]

Confined boundary element length

lc = hc โˆ’ โ€Š(โ€Šdbw + 2โ€Šยทโ€Šcโ€Š)โ€Š = 875 โˆ’ โ€Š(โ€Š8 + 2โ€Šยทโ€Š42โ€Š)โ€Š = 783 mm

Minimum confined boundary element length

lc,min = maxโ€Š(โ€Š0.15โ€Šยทโ€Šlw; 1.5โ€Šยทโ€Šbcโ€Š)โ€Š = maxโ€Š(โ€Š0.15โ€Šยทโ€Š4000; 1.5โ€Šยทโ€Š300โ€Š)โ€Š = 600 mm

lc = 783 mm ≥ lc,min = 600 mm. The check is satisfied! โœ“

[ยง 5.4.3.4.2 (10)]

Minimum confined boundary element thickness

For lc = 783 mm ≤ maxโ€Š(โ€Š2โ€Šยทโ€Šbc; 0.2โ€Šยทโ€Šlwโ€Š)โ€Š = maxโ€Š(โ€Š2โ€Šยทโ€Š300; 0.2โ€Šยทโ€Š4000โ€Š)โ€Š = 800 mm:

bc,min = max(hs15; 200) = max(382015; 200) = 254.666667 mm

bc = 300 mm ≥ bc,min = 254.666667 mm. The check is satisfied! โœ“

 

[ยง 5.4.3.4.1 (2)]

Check for normalized axial load

ฮฝd = NEdAcโ€Šยทโ€Šfcdโ€Šยทโ€Š103 = 22541200000โ€Šยทโ€Š16.666667โ€Šยทโ€Š103 = 0.1127

ฮฝd = 0.1127 โ‰ค 0.4. The check is satisfied! โœ“

 

Design anchorage length

ฮท1 = 1 - when good conditions are provided

ฮท2 = 1 - for dbL = 25 โ‰ค 32 mm

fctd = ฮฑctโ€Šยทโ€Šfctk,005ฮณc = 1โ€Šยทโ€Š1.7954751.5 = 1.196983 MPa

[EN 1992-1-1, ยง 8.4.2 (2)]

fbd = 2.25โ€Šยทโ€Šฮท1โ€Šยทโ€Šฮท2โ€Šยทโ€Šfctd = 2.25โ€Šยทโ€Š1โ€Šยทโ€Š1โ€Šยทโ€Š1.196983 = 2.693212 MPa

ฯƒsd = fyd = 434.782609 MPa

[EN 1992-1-1, ยง 8.4.3 (2)]

lb,rqd = dbL4โ€Šยทโ€Šฯƒsdfbd = 254โ€Šยทโ€Š434.7826092.693212 = 1008.977825 mm

[EN 1992-1-1, Table 8.2]

ฮฑ1 = 1 , ฮฑ2 = 1 , ฮฑ3 = 1 , ฮฑ5 = 1 , ฮฑ6 = 1.5

[EN 1992-1-1, ยง 8.7.3 (1)]

l0_ = ฮฑ1โ€Šยทโ€Šฮฑ2โ€Šยทโ€Šฮฑ3โ€Šยทโ€Šฮฑ5โ€Šยทโ€Šฮฑ6โ€Šยทโ€Šlb,rqd = 1โ€Šยทโ€Š1โ€Šยทโ€Š1โ€Šยทโ€Š1โ€Šยทโ€Š1.5โ€Šยทโ€Š1008.977825 = 1513.466738 mm

l0,min = maxโ€Š(โ€Š0.3โ€Šยทโ€Šฮฑ6โ€Šยทโ€Šlb,rqd; 15โ€Šยทโ€ŠdbL; 200โ€Š)โ€Š = maxโ€Š(โ€Š0.3โ€Šยทโ€Š1.5โ€Šยทโ€Š1008.977825; 15โ€Šยทโ€Š25; 200โ€Š)โ€Š = 454.040021 mm

l0 = roundโ€Š(โ€Šmaxโ€Š(โ€Šl0_; l0,minโ€Š)โ€Šโ€Š)โ€Š = roundโ€Š(โ€Šmaxโ€Š(โ€Š1513.466738; 454.040021โ€Š)โ€Šโ€Š)โ€Š = 1513 mm

 

Confined core dimensions (between centerlines of hoops)

b0 = bc โˆ’ โ€Š(โ€Šdbw + 2โ€Šยทโ€Šcโ€Š)โ€Š = 300 โˆ’ โ€Š(โ€Š8 + 2โ€Šยทโ€Š42โ€Š)โ€Š = 208 mm

h0 = hc โˆ’ โ€Š(โ€Šdbw + 2โ€Šยทโ€Šcโ€Š)โ€Š = 875 โˆ’ โ€Š(โ€Š8 + 2โ€Šยทโ€Š42โ€Š)โ€Š = 783 mm

Maximum bar spacing

db1 = hc โˆ’ 2โ€Šยทโ€Šโ€Š(โ€Šdbw + cโ€Š)โ€Š โˆ’ dbLnb1 โˆ’ 1 = 875 โˆ’ 2โ€Šยทโ€Šโ€Š(โ€Š8 + 42โ€Š)โ€Š โˆ’ 256 โˆ’ 1 = 150 mm

db2 = bc โˆ’ 2โ€Šยทโ€Šโ€Š(โ€Šdbw + cโ€Š)โ€Š โˆ’ dbLnb2 โˆ’ 1 = 300 โˆ’ 2โ€Šยทโ€Šโ€Š(โ€Š8 + 42โ€Š)โ€Š โˆ’ 253 โˆ’ 1 = 87.5 mm

Maximum distance between consecutive longitudinal bars engaged by hoops

[ยง 5.4.3.4.2 (9)]

dh,max = 200 mm

Distance between bars engaged by hoops

nh1 = max(floor(dh,maxdb1); 1) = max(floor(200150); 1) = 1

nh2 = max(floor(dh,maxdb2); 1) = max(floor(20087.5); 1) = 2

Distance between bars engaged by hoops

dh1 = nh1โ€Šยทโ€Šdb1 = 1โ€Šยทโ€Š150 = 150

dh2 = nh2โ€Šยทโ€Šdb2 = 2โ€Šยทโ€Š87.5 = 175

Distance between bars engaged by hoops

nh1 = round(โ€Š(โ€Šnb1 โˆ’ 1โ€Š)โ€Šโ€Šยทโ€Šdb1dh1) = round(โ€Š(โ€Š6 โˆ’ 1โ€Š)โ€Šโ€Šยทโ€Š150150) = 5

nh2 = round(โ€Š(โ€Šnb2 โˆ’ 1โ€Š)โ€Šโ€Šยทโ€Šdb2dh2) = round(โ€Š(โ€Š3 โˆ’ 1โ€Š)โ€Šโ€Šยทโ€Š87.5175) = 1

 

Hoop spacing in the critical region

[ยง 5.4.3.4.2 (9)]

scr = min(b02; 8โ€Šยทโ€ŠdbL; 175) = min(2082; 8โ€Šยทโ€Š25; 175) = 104 mm

Hoop spacing in lap zone

[ยง 5.6.3 (3), c)]

sl = min(100; bc4) = min(100; 3004) = 75 mm

Hoop spacing outside lap zone

[EN 1992-1-1, ยง 9.5.3 (3)]

s = minโ€Š(โ€Šbc; 20โ€Šยทโ€ŠdbL; 400โ€Š)โ€Š = minโ€Š(โ€Š300; 20โ€Šยทโ€Š25; 400โ€Š)โ€Š = 300 mm

 

Transverse reinforcement in the lap zone

Required area of one leg

[ยง 5.6.3 (4)]

Ast = slโ€Šยทโ€ŠdbL50โ€Šยทโ€Šfydfywd = 75โ€Šยทโ€Š2550โ€Šยทโ€Š434.782609434.782609 = 37.5 mmยฒ

Provided area of one leg

Asw1 = ฯ€โ€Šยทโ€Šdbw24 = 3.141593โ€Šยทโ€Š824 = 50.265482 mmยฒ

Design check: Asw1 = 50.265482 mmยฒ โ‰ฅ Ast = 37.5 mmยฒ. The check is satisfied! โœ“

Check for bar diameters > 20 mm:

Number of legs in the outer 1/3 of lap zone

nw = round(2โ€Šยทโ€Šl03โ€Šยทโ€Šsl) = round(2โ€Šยทโ€Š15133โ€Šยทโ€Š75) = 13

Total area of legs in the outer 1/3 of lap zone

ฮฃAsw = Asw1โ€Šยทโ€Šnw = 50.265482โ€Šยทโ€Š13 = 653.451272

[EN 1992-1-1 ยง 8.7.4.1 (3)]

Design check: ฮฃAsw = 653.451272 mmยฒ โ‰ฅ As1 = 490.873852 mmยฒ

An additional hoop is required for compressed bars

[EN 1992-1-1 ยง 8.7.4.2 (1)]

at 4โ€Šยทโ€ŠdbL = 4โ€Šยทโ€Š25 = 100 mm from the end of the lap zone.

 

Detailing for local ductility in the critical region

Total length of confining links

ฮฃli = โ€Š(โ€Šnh1 + 1โ€Š)โ€Šโ€Šยทโ€Šb0 + โ€Š(โ€Šnh2 + 1โ€Š)โ€Šโ€Šยทโ€Šh0 = โ€Š(โ€Š5 + 1โ€Š)โ€Šโ€Šยทโ€Š208 + โ€Š(โ€Š1 + 1โ€Š)โ€Šโ€Šยทโ€Š783 = 2814

Mechanical volumetric ratio of confining hoops within the critical region

ฯ‰d = Asw1โ€Šยทโ€Šฮฃlib0โ€Šยทโ€Šh0โ€Šยทโ€Šscrโ€Šยทโ€Šfywdfcd = 50.265482โ€Šยทโ€Š2814208โ€Šยทโ€Š783โ€Šยทโ€Š104โ€Šยทโ€Š434.78260916.666667 = 0.2178507

[ยง 5.4.3.2.2 (8)]

The minimum value is 0.08.

Design check: ฯ‰d = 0.21785070.08 = 0.08 . The check is satisfied! โœ“

Sum of the squares of the distances between consecutive engaged bars

ฮฃb2i = 2โ€Šยทโ€Šโ€Š(โ€Šnh1โ€Šยทโ€Šdh12 + nh2โ€Šยทโ€Šdh22โ€Š)โ€Š = 2โ€Šยทโ€Šโ€Š(โ€Š5โ€Šยทโ€Š1502 + 1โ€Šยทโ€Š1752โ€Š)โ€Š = 286250

Confinement effectiveness factors for bars and links

ฮฑn = 1 โˆ’ ฮฃb2i6โ€Šยทโ€Šb0โ€Šยทโ€Šh0 = 1 โˆ’ 2862506โ€Šยทโ€Š208โ€Šยทโ€Š783 = 0.7070664

ฮฑs = (1 โˆ’ scr2โ€Šยทโ€Šb0)โ€Šยทโ€Š(1 โˆ’ scr2โ€Šยทโ€Šh0) = (1 โˆ’ 1042โ€Šยทโ€Š208)โ€Šยทโ€Š(1 โˆ’ 1042โ€Šยทโ€Š783) = 0.7001916

ฮฑ = ฮฑnโ€Šยทโ€Šฮฑs = 0.7070664โ€Šยทโ€Š0.7001916 = 0.495082

Analysis results

Fundamental period of first vibration mode - T1 = 0.6795โ€‰ s

Upper limit period of constant spectral acceleration - TC = 0.4โ€‰ s

Basic behavior factor value - q0 = 3โ€‰

Design bending moment - MEd = 9591โ€‰ kNm

Bending moment capacity - MRd = 13268โ€‰ kNm

(The above values refer to the section above the base)

Curvature ductility factor

[ยง 5.2.3.4 (3)]

ฮผฮฆ = 2โ€Šยทโ€Šq0โ€Šยทโ€ŠMEdMRd โˆ’ 1 = 2โ€Šยทโ€Š3โ€Šยทโ€Š959113268 โˆ’ 1 = 3.337202 - for T1 โ‰ฅ TC

[ยง 5.2.3.4 (4)]

For steel class B, ductility factor is increased by 50% - ฮผฮฆ = 5.005803

Design value of steel yield strain - ฮตsy,d = fydEs = 434.782609200000 = 0.002173913

Mechanical ratio of vertical web reinforcement

ฯ‰v = ฯvโ€Šยทโ€Šfydfcd = 0.002094395โ€Šยทโ€Š434.78260916.666667 = 0.05463639

[ยง 5.4.3.4.2 (4)]

Design check: ฮฑฯ‰dฮฑฯ‰d_min = 30ยทฮผฮฆยท(ฮฝd + ฯ‰v )ยทฮตsy_dยทbc/b0 โ€“ 0.035

ฮฑฯ‰d = ฮฑโ€Šยทโ€Šฯ‰d = 0.495082โ€Šยทโ€Š0.2178507 = 0.1078539

ฮฑฯ‰d,min = 30โ€Šยทโ€Šฮผฮฆโ€Šยทโ€Šโ€Š(โ€Šฮฝd + ฯ‰vโ€Š)โ€Šโ€Šยทโ€Šฮตsy,dโ€Šยทโ€Šbcb0 โˆ’ 0.035 = 30โ€Šยทโ€Š5.005803โ€Šยทโ€Šโ€Š(โ€Š0.1127 + 0.05463639โ€Š)โ€Šโ€Šยทโ€Š0.002173913โ€Šยทโ€Š300208 โˆ’ 0.035 = 0.04379262

The required curvature ductility is provided: ฮฑฯ‰d = 0.1078539 โ‰ฅ ฮฑฯ‰d,min = 0.04379262 . โœ“

Ultimate strain of confined concrete

ฮตcu2,c = 0.0035 + 0.1โ€Šยทโ€Šฮฑฯ‰d = 0.0035 + 0.1โ€Šยทโ€Š0.1078539 = 0.01428539

Neutral axis depth at ultimate curvature

xu = โ€Š(โ€Šฮฝd + ฯ‰vโ€Š)โ€Šโ€Šยทโ€Šlwโ€Šยทโ€Šbcb0 = โ€Š(โ€Š0.1127 + 0.05463639โ€Š)โ€Šโ€Šยทโ€Š4000โ€Šยทโ€Š300208 = 965.402273 mm

Confined boundary element length

lc,req = xuโ€Šยทโ€Š(1 โˆ’ ฮตcu2ฮตcu2,c) = 965.402273โ€Šยทโ€Š(1 โˆ’ 0.00350.01428539) = 728.873416 mm

Design check: lc = 783 mm ≥ lc,req = 728.873416 mm. The check is satisfied! โœ“

NOTE: All references are according to EN 1998-1, unless noted otherwise.

@hydrostructai.com