Shear wall dimensions
Length - lw = 4000โ mm
Web thickness - bwo = 300โ mm
Total height - hw = 19000โ mm
Clear storey height - hs = 3820โ mm
Number of storeys - ns = 6โ
Confined zone dimensions
bc = 300โ mm, hc = 875โ mm
Cross section area
Area of confined boundary element
Af = bcโยทโhc = 300โยทโ875 = 262500 mmยฒ
Web area
Aw = โ(โlw โ 2โยทโhcโ)โโยทโbwo = โ(โ4000 โ 2โยทโ875โ)โโยทโ300 = 675000 mmยฒ
Total area
Ac = Aw + 2โยทโAf = 675000 + 2โยทโ262500 = 1200000 mmยฒ
Maximum seismic axial load - NEd = 2254โ kN
Concrete [EN 1992-1-1, Table 3.1]
Characteristic compressive cylinder strength
fck = 25โ MPa
Partial safety factor - ฮณc = 1.5 , ฮฑct = 1 , ฮฑcc = 1โ
Mean value of axial tensile strength
fctm = 0.3โยทโfck23 = 0.3โยทโ2523 = 2.564964 MPa
Characteristic axial tensile strength
fctk,005 = 0.7โยทโfctm = 0.7โยทโ2.564964 = 1.795475 MPa
Design compressive cylinder strength
fcd = ฮฑccโยทโfckฮณc = 1โยทโ251.5 = 16.666667 MPa
Unconfined concrete ultimate strain
ฮตcu2 = 0.0035
Ultimate compressive strain - ฮตc2 = 0.002
Longitudinal reinforcement
Characteristic yield strength - fyk = 500โ MPa
Selected steel class B500BPartial safety factor - ฮณs = 1.15
Design yield strength - fyd = fykฮณs = 5001.15 = 434.782609 MPa
Modulus of elasticity - Es = 200000 MPa
Reinforcement for each confined boundary element
Bar diameter - dbL = 25โ mm
[BS EN 1992-1-1, ยง 9.5.2 (1)/NA.1]
Minimum bar diameter - dbL,min = 12 mm
Bar count - nb = 13โ
Bar count along "h0" - nb1 = 6โ
Bar count along "b0" - nb2 = ceiling(nb2 โ nb1 + 2) = ceiling(132 โ 6 + 2) = 3
Reinforcement area
As1 = ฯโยทโdbL24 = 3.141593โยทโ2524 = 490.873852 mmยฒ
As = nbโยทโAs1 = 13โยทโ490.873852 = 6381.360078 mmยฒ
Reinforcement ratio
ฯL = AsAf = 6381.360078262500 = 0.02430994
[ยง 5.4.3.4.2 (8)]
Design check: 0.005 โค ฯL = 0.02430994 โค 0.04. The check is satisfied! โ
Vertical web reinforcement
Bar diameter - dbv = 10โ mm
Bar spacing - sv = 250โ mm
[EN 1992-1-1, ยง 9.6.2 (3)]
Maximum bar spacing
sv,max = minโ(โ3โยทโbwo; 400โ)โ = minโ(โ3โยทโ300; 400โ)โ = 400 mm
Single bar area - Asv1 = ฯโยทโdbv24 = 3.141593โยทโ1024 = 78.539816 mmยฒ
Reinforcement ratio - ฯv = 2โยทโAsv1svโยทโbwo = 2โยทโ78.539816250โยทโ300 = 0.002094395
[EN 1992-1-1, ยง 9.6.2 (1)]
Minimum reinforcement ratio - ฯv,min = 0.002
[ยง 5.4.3.4.2 (11)]
Minimum reinforcement ratio for zones with compressive strain > 0.002
ฯv,min = 0.005
Horizontal web reinforcement
Bar diameter - dbh = 12โ mm
Bar spacing - sh = 150โ mm
[EN 1992-1-1, ยง 9.6.3 (2)]
Maximum bar spacing - sh,max = 400 mm
Single bar area - Ash1 = ฯโยทโdbh24 = 3.141593โยทโ1224 = 113.097336 mmยฒ
Reinforcement ratio - ฯh = 2โยทโAsh1shโยทโbwo = 2โยทโ113.097336150โยทโ300 = 0.005026548
[EN 1992-1-1, ยง 9.6.3 (1)]
Minimum reinforcement ratio
ฯh,min = maxโ(โ0.25โยทโฯv; 0.001โ)โ = maxโ(โ0.25โยทโ0.002094395; 0.001โ)โ = 0.001
Transverse reinforcement in confined boundary elements
Characteristic yield strength - fywk = 500โ MPa
Design yield strength - fywd = fywkฮณs = 5001.15 = 434.782609 MPa
Concrete cover to hoops - c = 42โ mm
Hoop diameter - dbw = 8โ mm
[EN 1992-1-1, ยง 9.5.3 (1)]
Minimum diameter
dbw,min = maxโ(โ6; 0.25โยทโdbLโ)โ = maxโ(โ6; 0.25โยทโ25โ)โ = 6.25 mm
Hoop diameter check:
dbw = 8 โฅ dbw,min = 6.25 mm. The check is satisfied! โ
[ยง 5.4.3.4.2 (1)]
Critical region height
hcr_ = max(lw; hw6) = max(4000; 190006) = 4000 mm
Must not be greater than
hcr,max = minโ(โ2โยทโlw; hsโ)โ = minโ(โ2โยทโ4000; 3820โ)โ = 3820 mm, for number of storeys ns = 6 ≤ 6
hcr = minโ(โhcr_; hcr,maxโ)โ = minโ(โ4000; 3820โ)โ = 3820 mm
[ยง 5.1.2 (1)]
Shear wall dimensions check
lwbwo = 4000300 = 13.333333 ≥ 4. The check is satisfied! โ
[ยง 5.4.1.2.3 (1)]
Minimum thickness - bw,min = max(150; hs20) = max(150; 382020) = 191 mm
bwo = 300 mm ≥ bw,min = 191 mm. The check is satisfied! โ
[ ยง 5.4.3.4.2 (6)]
Confined boundary element length
lc = hc โ โ(โdbw + 2โยทโcโ)โ = 875 โ โ(โ8 + 2โยทโ42โ)โ = 783 mm
Minimum confined boundary element length
lc,min = maxโ(โ0.15โยทโlw; 1.5โยทโbcโ)โ = maxโ(โ0.15โยทโ4000; 1.5โยทโ300โ)โ = 600 mm
lc = 783 mm ≥ lc,min = 600 mm. The check is satisfied! โ
[ยง 5.4.3.4.2 (10)]
Minimum confined boundary element thickness
For lc = 783 mm ≤ maxโ(โ2โยทโbc; 0.2โยทโlwโ)โ = maxโ(โ2โยทโ300; 0.2โยทโ4000โ)โ = 800 mm:
bc,min = max(hs15; 200) = max(382015; 200) = 254.666667 mm
bc = 300 mm ≥ bc,min = 254.666667 mm. The check is satisfied! โ
[ยง 5.4.3.4.1 (2)]
Check for normalized axial load
ฮฝd = NEdAcโยทโfcdโยทโ103 = 22541200000โยทโ16.666667โยทโ103 = 0.1127
ฮฝd = 0.1127 โค 0.4. The check is satisfied! โ
Design anchorage length
ฮท1 = 1 - when good conditions are provided
ฮท2 = 1 - for dbL = 25 โค 32 mm
fctd = ฮฑctโยทโfctk,005ฮณc = 1โยทโ1.7954751.5 = 1.196983 MPa
[EN 1992-1-1, ยง 8.4.2 (2)]
fbd = 2.25โยทโฮท1โยทโฮท2โยทโfctd = 2.25โยทโ1โยทโ1โยทโ1.196983 = 2.693212 MPa
ฯsd = fyd = 434.782609 MPa
[EN 1992-1-1, ยง 8.4.3 (2)]
lb,rqd = dbL4โยทโฯsdfbd = 254โยทโ434.7826092.693212 = 1008.977825 mm
[EN 1992-1-1, Table 8.2]
ฮฑ1 = 1 , ฮฑ2 = 1 , ฮฑ3 = 1 , ฮฑ5 = 1 , ฮฑ6 = 1.5
[EN 1992-1-1, ยง 8.7.3 (1)]
l0_ = ฮฑ1โยทโฮฑ2โยทโฮฑ3โยทโฮฑ5โยทโฮฑ6โยทโlb,rqd = 1โยทโ1โยทโ1โยทโ1โยทโ1.5โยทโ1008.977825 = 1513.466738 mm
l0,min = maxโ(โ0.3โยทโฮฑ6โยทโlb,rqd; 15โยทโdbL; 200โ)โ = maxโ(โ0.3โยทโ1.5โยทโ1008.977825; 15โยทโ25; 200โ)โ = 454.040021 mm
l0 = roundโ(โmaxโ(โl0_; l0,minโ)โโ)โ = roundโ(โmaxโ(โ1513.466738; 454.040021โ)โโ)โ = 1513 mm
Confined core dimensions (between centerlines of hoops)
b0 = bc โ โ(โdbw + 2โยทโcโ)โ = 300 โ โ(โ8 + 2โยทโ42โ)โ = 208 mm
h0 = hc โ โ(โdbw + 2โยทโcโ)โ = 875 โ โ(โ8 + 2โยทโ42โ)โ = 783 mm
Maximum bar spacing
db1 = hc โ 2โยทโโ(โdbw + cโ)โ โ dbLnb1 โ 1 = 875 โ 2โยทโโ(โ8 + 42โ)โ โ 256 โ 1 = 150 mm
db2 = bc โ 2โยทโโ(โdbw + cโ)โ โ dbLnb2 โ 1 = 300 โ 2โยทโโ(โ8 + 42โ)โ โ 253 โ 1 = 87.5 mm
Maximum distance between consecutive longitudinal bars engaged by hoops
[ยง 5.4.3.4.2 (9)]
dh,max = 200 mm
Distance between bars engaged by hoops
nh1 = max(floor(dh,maxdb1); 1) = max(floor(200150); 1) = 1
nh2 = max(floor(dh,maxdb2); 1) = max(floor(20087.5); 1) = 2
Distance between bars engaged by hoops
dh1 = nh1โยทโdb1 = 1โยทโ150 = 150
dh2 = nh2โยทโdb2 = 2โยทโ87.5 = 175
Distance between bars engaged by hoops
nh1 = round(โ(โnb1 โ 1โ)โโยทโdb1dh1) = round(โ(โ6 โ 1โ)โโยทโ150150) = 5
nh2 = round(โ(โnb2 โ 1โ)โโยทโdb2dh2) = round(โ(โ3 โ 1โ)โโยทโ87.5175) = 1
Hoop spacing in the critical region
[ยง 5.4.3.4.2 (9)]
scr = min(b02; 8โยทโdbL; 175) = min(2082; 8โยทโ25; 175) = 104 mm
Hoop spacing in lap zone
[ยง 5.6.3 (3), c)]
sl = min(100; bc4) = min(100; 3004) = 75 mm
Hoop spacing outside lap zone
[EN 1992-1-1, ยง 9.5.3 (3)]
s = minโ(โbc; 20โยทโdbL; 400โ)โ = minโ(โ300; 20โยทโ25; 400โ)โ = 300 mm
Transverse reinforcement in the lap zone
Required area of one leg
[ยง 5.6.3 (4)]
Ast = slโยทโdbL50โยทโfydfywd = 75โยทโ2550โยทโ434.782609434.782609 = 37.5 mmยฒ
Provided area of one leg
Asw1 = ฯโยทโdbw24 = 3.141593โยทโ824 = 50.265482 mmยฒ
Design check: Asw1 = 50.265482 mmยฒ โฅ Ast = 37.5 mmยฒ. The check is satisfied! โ
Check for bar diameters > 20 mm:
Number of legs in the outer 1/3 of lap zone
nw = round(2โยทโl03โยทโsl) = round(2โยทโ15133โยทโ75) = 13
Total area of legs in the outer 1/3 of lap zone
ฮฃAsw = Asw1โยทโnw = 50.265482โยทโ13 = 653.451272
[EN 1992-1-1 ยง 8.7.4.1 (3)]
Design check: ฮฃAsw = 653.451272 mmยฒ โฅ As1 = 490.873852 mmยฒ
An additional hoop is required for compressed bars
[EN 1992-1-1 ยง 8.7.4.2 (1)]
at 4โยทโdbL = 4โยทโ25 = 100 mm from the end of the lap zone.
Detailing for local ductility in the critical region
Total length of confining links
ฮฃli = โ(โnh1 + 1โ)โโยทโb0 + โ(โnh2 + 1โ)โโยทโh0 = โ(โ5 + 1โ)โโยทโ208 + โ(โ1 + 1โ)โโยทโ783 = 2814
Mechanical volumetric ratio of confining hoops within the critical region
ฯd = Asw1โยทโฮฃlib0โยทโh0โยทโscrโยทโfywdfcd = 50.265482โยทโ2814208โยทโ783โยทโ104โยทโ434.78260916.666667 = 0.2178507
[ยง 5.4.3.2.2 (8)]
The minimum value is 0.08.
Design check: ฯd = 0.2178507 ≥ 0.08 = 0.08 . The check is satisfied! โ
Sum of the squares of the distances between consecutive engaged bars
ฮฃb2i = 2โยทโโ(โnh1โยทโdh12 + nh2โยทโdh22โ)โ = 2โยทโโ(โ5โยทโ1502 + 1โยทโ1752โ)โ = 286250
Confinement effectiveness factors for bars and links
ฮฑn = 1 โ ฮฃb2i6โยทโb0โยทโh0 = 1 โ 2862506โยทโ208โยทโ783 = 0.7070664
ฮฑs = (1 โ scr2โยทโb0)โยทโ(1 โ scr2โยทโh0) = (1 โ 1042โยทโ208)โยทโ(1 โ 1042โยทโ783) = 0.7001916
ฮฑ = ฮฑnโยทโฮฑs = 0.7070664โยทโ0.7001916 = 0.495082
Analysis results
Fundamental period of first vibration mode - T1 = 0.6795โ s
Upper limit period of constant spectral acceleration - TC = 0.4โ s
Basic behavior factor value - q0 = 3โ
Design bending moment - MEd = 9591โ kNm
Bending moment capacity - MRd = 13268โ kNm
(The above values refer to the section above the base)
Curvature ductility factor
[ยง 5.2.3.4 (3)]
ฮผฮฆ = 2โยทโq0โยทโMEdMRd โ 1 = 2โยทโ3โยทโ959113268 โ 1 = 3.337202 - for T1 โฅ TC
[ยง 5.2.3.4 (4)]
For steel class B, ductility factor is increased by 50% - ฮผฮฆ = 5.005803
Design value of steel yield strain - ฮตsy,d = fydEs = 434.782609200000 = 0.002173913
Mechanical ratio of vertical web reinforcement
ฯv = ฯvโยทโfydfcd = 0.002094395โยทโ434.78260916.666667 = 0.05463639
[ยง 5.4.3.4.2 (4)]
Design check: ฮฑฯd ≥ ฮฑฯd_min = 30ยทฮผฮฆยท(ฮฝd + ฯv )ยทฮตsy_dยทbc/b0 โ 0.035
ฮฑฯd = ฮฑโยทโฯd = 0.495082โยทโ0.2178507 = 0.1078539
ฮฑฯd,min = 30โยทโฮผฮฆโยทโโ(โฮฝd + ฯvโ)โโยทโฮตsy,dโยทโbcb0 โ 0.035 = 30โยทโ5.005803โยทโโ(โ0.1127 + 0.05463639โ)โโยทโ0.002173913โยทโ300208 โ 0.035 = 0.04379262
The required curvature ductility is provided: ฮฑฯd = 0.1078539 โฅ ฮฑฯd,min = 0.04379262 . โ
Ultimate strain of confined concrete
ฮตcu2,c = 0.0035 + 0.1โยทโฮฑฯd = 0.0035 + 0.1โยทโ0.1078539 = 0.01428539
Neutral axis depth at ultimate curvature
xu = โ(โฮฝd + ฯvโ)โโยทโlwโยทโbcb0 = โ(โ0.1127 + 0.05463639โ)โโยทโ4000โยทโ300208 = 965.402273 mm
Confined boundary element length
lc,req = xuโยทโ(1 โ ฮตcu2ฮตcu2,c) = 965.402273โยทโ(1 โ 0.00350.01428539) = 728.873416 mm
Design check: lc = 783 mm ≥ lc,req = 728.873416 mm. The check is satisfied! โ
NOTE: All references are according to EN 1998-1, unless noted otherwise.
@hydrostructai.com